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ABSTRACT �4 kPa. McKenzie et al. (1991) compared several sets
of descriptive tables with mutually exclusive classes forIt is impractical to measure water retention for large-scale hydro-
hydraulic conductivity predictions.logic, agronomic, and ecological applications or at the design stages

Soil structural parameters were related to water re-of many projects; therefore, water retention estimates are often used.
Field soil descriptions routinely include structure and consistence tention. Williams et al. (1983) found that the presence
characterization. The objective of this work was to use the National of pedality, particle-size distribution, and grade of struc-
Resource Conservation Service (NRCS) database to evaluate the ture were the soil properties most consistently associ-
potential for structural and consistence properties to serve as pre- ated with similar moisture characteristics. Williams et
dictors of soil hydraulics properties. Total of ≈2140 samples were al. (1992) and Danalatos et al. (1994) suggested having
found that had (i) values of water contents at �33 kPa and �1500 kPa, different equations to estimate soil water retention for(ii) structure characterized with grade, size, and shape, (iii) consistence

weakly structured and well-structured soil horizons.characterized with dry and moist consistency, stickiness, and plasticity,
Hall et al. (1977) and McKeague (1987) used regionaland (iv) textural class determined in the field and from lab textural
databases from Canada and England to select soil struc-analysis. Because structural and consistence parameters were repre-
tural parameters suitable to estimate air-filled porositysented by categories rather than numbers, regression trees were used

for recursive partitioning of the data sets into groups to decrease and available water capacity.
overall variability measured as the sum of squared errors within Soil consistence was also referred to with respect to
groups. Plasticity class, grade class, and dry consistency class were soil hydraulic properties. Bicki et al. (1988) found that
leading predictors of water retention at both �33 kPa and �1500 Mollisols had higher percolation rates and lower coeffi-
kPa matric potentials. The accuracy of estimates from structural and cients of variation than Alfisols within a biosequence,
consistence parameters was lower than from textural classes. Using and attributed this difference, in part, to stronger subsoilsoil structural and consistence parameters along with textural classes

consistence in Alfisols. Vepraskas et al. (1996) observedprovided a small, although significant improvement in accuracy of
that parallel changes in saturated hydraulic conductivitywater retention estimates as compared with estimation from texture
and in stickiness and plasticity occur in transitional hori-alone. Soil structural and consistence parameters can serve as pre-
zons separating soil and saprolite. Studying a variety ofdictors of soil water retention because those parameters reflect soil

basic properties that affect soil hydraulic properties. soils, Voronin (1990) found a linear relationship be-
tween gravimetric water contents at plasticity limit and
soil water potential. Data on consistence in terms of
penetration resistance were recently found to be usefulKnowing soil water retention is essential in many
predictors of soil water retention (Pachepsky et al., 1998;hydrologic, agronomic, and ecological applica-
Gimenez et al., 2001). It was recognized that databasestions. It is impractical to measure water retention for
for predicting soil water retention have to be expandedlarge-scale applications or at the design stages of many
to include soil structure and soil consistence parametersprojects, and water retention estimates are often used.
(Rawls et al., 1991).Soil structural properties were shown to be an impor-

Soil structure can be characterized with either cate-tant factor of soil hydraulic properties. Void measure-
gorical or numerical variables. Categorical characteriza-ments and counts produce parameters of structure that
tion consists in setting classes or categories, like weak,help to estimate sol hydraulic conductivity. A detailed
moderate, and strong for the grade, and recording thecount of lengths and widths of voids allowed Anderson
class or category for each soil sample. Numerical charac-and Bouma (1973) to compute hydraulic conductivity
terization presumes the ability to measure the structuralof an argillic horizon of silt loam soil using a Kozeni-
variable and to have a range of continuous values toKarman equation for flows in slits. Pore size count was
characterize soil samples, like it is done for bulk densityused by Rawls et al. (1993) to estimate the macropore
or penetration resistance. When soil structural proper-Ksat. Lin et al. (1999a,b) presented an elaborated system
ties of shape, size, and grade are presented as categoricalof morphometric indices and showed that these indices,
rather than numerical variables, data about soil struc-and not traditional texture, bulk density, and organic
ture cannot be directly used in statistical regressions ormatter content, appeared to be the best predictors of
neural networks to estimate water retention from otherparameters of macro- and micropore flow. Griffiths
soil properties. The same is true for soil consistence(1991) found ped size and number of biopores to be
properties if they are characterized in categorical ratherleading predictors for Ksat and hydraulic conductivity at
than numerical terms. It was shown that the categorical
variables can be used to set boundaries to partition soils
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size, and shape, (iii) consistence characterized with dry and1985). However, a procedure to select an optimum parti-
moist consistency, stickiness, and plasticity, and (iv) texturaltioning for hydraulic conductivity or water retention
class determined in the field and from lab textural analysis,was not suggested. Recently, regression trees were rec-
all measured and described in the same pedon. A total of 2142ognized as a suitable statistical technique for using cate-
and 2137 samples were found for �33 kPa and �1500 kPagorical variables as predictors (Clark and Pregibon,
matric potentials, respectively. Thirty percent of all samples in1992). Regression trees were successfully used to ex-
that data set belonged to pedons that did not have a taxonomicplore databases in natural sciences (Michaelson et al.,
family phrase. Mollisols, Aridisols, Alfisols, and Entisols were1994; Fielding, 1999), and, in particular, in soil science
the most numerous among soils with known taxonomy in the(McKenzie and Jacquier, 1997; Anderson et al., 1999).
data set, and constituted 24, 14, 11, and 6%, respectively.Optimum partitioning of databases with regression trees
About half of all samples came from California, Colorado,was used to find both the best predictors and best group-
Idaho, Kansas, New Mexico, Texas, and Washington.ing of samples. Figure 1 shows distributions of structural and consistenceField soil descriptions routinely include structure and properties among samples in the data set. The weak and mod-

consistence characterization. Therefore, it can be bene- erate grades are the most common in the data set, whereas
ficial to know whether and to what extent structural samples with the strong grade constitute only ≈10%. Medium
and consistence properties may serve as predictors of and fine sizes dominate in the data set. Angular blocky, blocky,
soil hydraulic properties that are more difficult to mea- and subangular blocky shapes were by far overrepresented in
sure. Those questions can be addressed with data from the dataset. No columnar, massive, single grain shape was
the NRCS database (Soil Survey Staff, 1997), as it con- found, and only 14 samples had the wedge shape. The moist
tains a large volume of coupled data on soil structure, consistence in all but 17 samples was friable or very friable.
soil consistence, and soil water retention at �33 and The dry consistency was hard to various degrees in ≈90%
�1500 kPa. Regression trees are a tool of choice because of samples. Stickiness was well distributed between various
the NRCS data sets include categorical rather than nu- categories, from nonsticky to very sticky. Plasticity was also
merical variables. well distributed, and the slightly and moderately plastic sam-

The objective of this work was to use the NRCS ples were more numerous than samples that were very plastic
database to evaluate the potential for structural and or nonplastic.
consistence properties to serve as predictors of soil hy- The major field-determined textural class in the data set
draulics properties. was silt loam found in ≈24% of all samples (Table 1). Sandy

loam, loam, clay, and silty clay loam were represented with
15, 12, 12, and 10% of all samples, respectively. Silt and sandyMATERIALS AND METHODS
clay were each represented with �0.5% of all samples, while

Soil Database sands and loamy sands were each ≈3% of all samples. Values
of volumetric water contents at �33 kPa, �33, and �1500 kPa,The National Soil Characterization Database was screened
�1500 (� is the water content at the matric potential of interest),to select soil samples that had (i) values of water contents at
were obtained as products of gravimetric water contents on�33 kPa and �1500 kPa on clods and bulk densities at �33

kPa and air dried soil, (ii) structure characterized with grade, corresponding bulk density.

Fig. 1. Distributions of structural and consistence parameters among the samples in the data set of this work.
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Table 1. Statistics of water retention (%, by vol.) at �33 and �1500 kPa matrix potential by textural classes defined from field judgement
and laboratory determination of texture.

Field-judged textural class Textural class from laboratory measurements

�33 kPa �1500 kPa �33 kPa �1500 kPa

Textural class n Mean SD Mean SD n Mean SD Mean SD

Sand 69 12.7 7.9 4.1 2.4 12 10.9 9.5 4.1 4.8
Loamy sand 66 16.3 8.3 6.6 2.5 63 15.0 7.4 5.6 3.0
Sandy loam 319 22.5 8.4 10.0 4.1 333 20.9 8.2 8.8 3.8
Loam 257 28.9 6.9 14.4 5.1 213 29.9 8.6 14.3 5.1
Silt loam 510 33.1 6.3 13.7 4.5 479 32.8 6.7 13.8 4.9
Silt 6 34.3 5.2 9.1 5.2 1 34.0 NA 7.7 NA
Sandy clay loam 76 28.2 6.3 16.8 4.9 105 25.0 6.7 13.6 4.3
Clay loam 200 34.9 5.5 20.3 4.1 203 33.6 7.0 18.9 5.1
Silty clay loam 221 36.5 5.7 20.7 4.1 288 36.9 5.9 21.0 5.4
Sandy clay 8 26.4 4.0 19.2 4.7 10 27.7 5.2 17.6 3.2
Silty clay 149 40.2 4.9 26.4 4.4 132 39.1 5.2 26.0 4.8
Clay 261 41.4 6.5 28.5 5.1 303 40.1 6.3 27.1 5.3

then split up into two parts, each having the number of samplesRegression Tree Modeling
greater than Mgroup. An example of such partitioning is shown

Regression tree modeling is an exploratory technique based in Table 2, where raw data are shown in Columns 1 to 4:
on uncovering structure in data (Clark and Pregibon, 1992). variable x1 is numerical; variable x2 is categorical with three
The resulting model partitions data first into two groups, then possible levels a, b, and c; and y is the variable of interest to
into four groups, and so on, providing groups as homogeneous be predicted. Columns 4 to 8 show the same database sorted
as possible at each of the levels of partitioning. Each parti- by the numerical variable x1. Let the value of Mgroup be equal
tioning can be viewed as a branching, and the final fit of model to 3. Then, possible partitions of the database by the variable
to data looks like a tree with two branches originating in x1 are:
each node. Regression trees first became quite popular in

(1) either x1 � 1.6, Samples 1, 3, 6, or x1 � 1.6,environmental sciences (Lees and Ritman, 1991; Baker, 1993),
Samples 11, 5, 2, 9, 8, 10, 7, 4;and were later used in studies on land quality assessment and

(2) either x1 � 2.15, Samples 1, 3, 6, 11, or x1 � 2.15,soil properties estimation (Van Lanen et al., 1992; McKenzie
Samples 5, 2, 9, 8, 10, 7, 4;and Jacqier, 1997; McKenzie and Ryan, 1999). Regression

......trees can use both categorical and numerical variables as pre-
(7) either x1 � 3.1, Samples 1, 3, 6, 11, 5, 2, 9, 8, ordictors (Breiman et al., 1993). Regression trees can be devel-

x1 � 3.1, Samples 10, 7, 4.oped with the software SPLUS (MathSoft, 1999) that has been
used in this work, and also with the SAS software. If the variable is categorical, then the partitions are formedThe regression tree algorithm works as follows. Suppose after dividing the database into subsets having the same valuethat a database is organized as a table with columns x1, x2, of this variable and splitting it by all possible combinations
x3,..., xN representing predictor variables and the column y of subsets. In the example of Table 2, the subsets are shownrepresenting the response variable. The minimum number of in columns 9 through 13. Then possible partitions aresamples, or database lines, before a partitioning, Msplit, and
the minimum number of samples in a group after partitioning, (1) a|bc, i.e., either x2 � a, Samples 5, 6, 9, or x2 � b or x2 �
Mgroup, has to be set first. Then all possible partitions are formed c, Samples 1, 3, 4, 10, 11, 2, 7, 8.
for each of predictor variables. (2) ab|c, i.e., either (x2 � a or x2 � b), Samples 5, 6, 9, 1, 3,

The method of forming a partition depends on the type 4, 10, 11, or x2 � c, Samples 2, 7, 8.
of the variable. If the variable is numerical, then the whole (3) ac|b, i.e., either (x2 � a or x2 � c), Samples 5, 6, 9, 2, 7,

8, or x2 � b, Samples 1, 3, 4, 10, 11.database table is sorted by the column of this variable and

Table 2. Synthetic database to explain the regression tree algorithm.

Raw data Data sorted by the variable x1 Data sorted by the variable x2

Sample x1† x2‡ y§ Sample x1 x2 y �D¶ Sample x1 x2 y

1 0.8 b 7.9 1 0.8 b 7.9 ND# 5 2.4 a 3.2
2 2.7 c 4.8 6 1.1 a 3.5 ND 6 1.1 a 3.5
3 1.3 b 6.1 3 1.3 b 6.1 ND 9 2.8 a 3
4 4.2 b 2.5 11 1.9 b 5.5 14.1 1 0.8 b 7.9
5 2.4 a 3.2 5 2.4 a 3.2 19.7 3 1.3 b 6.1
6 1.1 a 3.5 2 2.7 c 4.8 14.5 4 4.2 b 2.5
7 3.6 c 0.6 9 2.8 a 3 18.5 10 3.3 b 1.7
8 2.9 c 5 8 2.9 c 5 14.7 11 1.9 b 5.5
9 2.8 a 3 10 3.3 b 1.7 23.4 2 2.7 c 4.8
10 3.3 b 1.7 7 3.6 c 0.6 ND 7 3.6 c 0.6
11 1.9 b 5.5 4 4.2 b 2.5 ND 8 2.9 c 5

† x1 variable is numerical.
‡ x2 variable is categorical to three levels.
§ y is the variable of interest to be predicted.
¶ �D � change in deviance.
# ND � cannot be defined.
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The total possible number of partitions with a categorical
variable is 2k�1 � 1, where k is the number of levels. For
example, for a variable having four levels a, b, c, d, there are
24�1 � 1 � 7 possible partitions (a|bcd, ab|cd, abc|d, ac|bd,
ad|bc, abd|c, acd|b).

The first subset of samples in a partition is called left branch,
and the second is called right branch. For example, in the
partition (1) of the database in Table 2 by the variable x1, the
left branch will consist of samples where x1 � 1.6 (Samples 1,
3, 6), and the right branch consists of samples where x1 � 1.6
(Samples 11, 5, 2, 9, 8, 10, 7, 4).

All partitions by all variables are compared with the reduc-
tion in nonhomogeneity that they provide. The nonhomogene-
ity in a group of samples is measured by computing deviances,
which are defined for a group of observed values y as

D � �
i

(yi � y)2

Here, y is the mean value across all observations yi. Each
partition generates left DL � �

L
(yi � y)2 and right DR � �

R
Fig. 2. Regression tree for the test data set in Table 1. The node(yi � y)2 deviance values where subscripts L and R indicate

number in brackets, the average value of the dependent variablecollections of numbers of samples in branches in a partition.
for the group, the standard deviation of the dependent variableThe partition that maximizes the change in deviance
within groups in parentheses, and the number of samples in the
group are shown beneath terminal nodes.�D � D � DL � DR

is the partition to chose. For the example of Table 2, values
of �D for the partitioning by the variable x1 are shown in To decide on the value of K for this study, we applied the
the column 9. The largest change in deviance, �D � 23.4, is jackknife cross-validation (Good, 1999). The original database
achieved after partitioning ‘either x1 � 3.1 or x1 � 3.1’. Values of 2142 samples was 10 times randomly divided into develop-
of �D obtained after partitioning by the categorical variable ment and testing subsets in 9:1 proportion. For each such
x2 are �D � 2.3 for a|bc, �D � 1.1 for ab|c, and �D � 5.6 division, regression trees were obtained for the development
for ac|b. Therefore, the partitioning ‘either x1 � 3.1 or x1 � subsets and then applied to both development and testing
3.1’ is the one to choose in this example. subsets. Accuracy of the trees was estimated with the data

Each branch obtained after partitioning is partitioned again that had been used to obtain the regression tree (developmentin accordance with the limitations imposed by values of Msplit data set), and with data that had not been in the tree construc-and Mgroup. In the example of Table 2, the group of samples
tion (testing datasets). The accuracy of water retention esti-where x1 � 3.1 cannot be partitioned anymore, but the group
mates was characterized with root mean squared errorwith x1 � 3.1 can. Attempts to partition the latter group by
(RMSE) for both development and testing subsets. The RMSEthe variable x1 lead to the best values of �D � 6.1, whereas

partitioning ‘either x2 � a or (x2 � b or x2 � c)’ gives the was computed as RMSE � √�
i

(�i,est � �i,meas)2/Nd, where sub-
value of �D � 12.9, and becomes the partitioning to choose.

scripts “est” and “meas” denote predictions from regressionFurther partition is not possible because the minimum size of
trees and measured data, respectively; Nd is the number ofa group is achieved, and this node of the tree is a terminal
samples in the subset minus the number of partitions, summa-node. The final regression tree for this example is shown in
tion is over all data in the subset. Average values of RMSEFig. 2. Here the number of a terminal node is shown in brack-

ets, and the average value of the variable y for this node, for each value of K from those computations are shown in
standard deviations of the variable y in parentheses, and the Fig. 3 for water retention at �33 kPa. As the parameter K
count of samples pertaining to this node are shown beneath decreases, the accuracy of estimates in both development and
the terminal node numbers. The average value is the value testing improves (Fig. 3a), and the number of terminal nodes
predicted for the whole group of samples forming the termi- increases (Fig. 3b). The accuracy of estimates in the testing
nal node. data sets stabilizes somewhere between K � 100 and K �

In the limit, the recursive partitioning of a large database 400, and remains approximately constant when values of K
may produce a tree with a very large number of terminal further decrease. The variability in RMSE in testing data setsnodes. There is a chance that the predictive ability of such

is such that the differences between RMSE at K � 400 andlarge tree will be limited, because the later branches will show
K � 100 are not statistically significant (Fig. 3a). Because theintricacies of small groups of samples specific for the database.
average number of terminal nodes is significantly smaller forTo avoid such overfitting, a tree has to be pruned to be useful
K � 400 than for K � 100 (Fig. 3b), we preferred using thefor predictions. The regression tree methodology has varia-
larger value of K to have fewer groups to simplify interpreta-tions regarding tree pruning (Bell, 1999). To snip off the least
tion of results of partitioning in those groups. Similar resultsimportant partitions, the software SPLUS (MathSoft, 1999)

that has been used in this work, applies the cost-complexity were obtained for water retention at �1500 kPa (data not
measure DK: shown). The value of K � 400 was used for both �33 and

�1500 kPa. Values of Msplit � 10 and Mgroup � 5 were used in
Dk(T) � D(T) � K � NTN all computations. Hypotheses about the significance of differ-

ences between average values were tested with the t-test atHere D(T) is the deviance of the subtree (T), NTN is the number
of terminal nodes, and K is the cost-complexity parameter. the significance level of 0.05.
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Nonplastic samples of weak or moderate grade that
are sticky to some extent are partitioned by the size of
structural units. Medium or coarse size leads to the
smaller average water retention (Node [6]) as compared
with samples having the fine size of structural units at
Terminal Nodes [7] and [8]. The two latter nodes are
distinguished by the grade of the samples, so that the
weak grade results in larger average water content at
�33 kPa (Node [8]).

The samples that are slightly plastic are first parti-
tioned in the same way as nonplastic samples, that is,
by the grade and then by stickiness. Slightly plastic sam-
ples of weak grade have average water retention increas-
ing as the stickiness increases (Nodes [9], [10], and [11]).
Among slightly plastic samples with moderate or strong
grade, stronger grade leads to the larger �33, as shown
in Nodes [12] and [13].

Moderately plastic samples are partitioned by the dry
consistency, so that soft dry consistency resulted in
smaller average �33 (Node [14]), as compared with the
hard dry consistency (Node [15]). Finally, very plastic
samples could be partitioned by the shape of structural
units, and the blocky shape resulted in smaller average
water content at �33 kPa (Node [16]), as compared
with other shapes of structural units (Node [17]).

The main decrease in the deviance occurs during the
Fig. 3. Effect of the size-complexity parameters on the accuracy, relia- first two or three partitions. In plastic samples, parti-

bility, and number of terminal nodes NTN of the regression tree. tioning by the degree of plasticity decreases the devi-RMSE, root mean squared error of the volumetric water content
ances more than partitioning by grade and stickinessat �33 kPa.
does for nonplastic samples (data not shown). The more
plastic the samples are, the smaller the variability is in �33RESULTS
within groups of samples, as characterized by standardWater Retention at �33 kPa deviations. The count of samples in a group does not

The regression tree obtained for water content at �33 seem to affect the variability within the group.
kPa from the whole data set is shown in Fig. 4. The first
partition of samples into two most homogeneous groups Water Retention at �1500 kPa
occurs by the plasticity, so that nonplastic samples form

The regression tree obtained for water retention atone large group, and plastic samples constitute another
�1500 kPa from the whole data set is shown in Fig. 5.one. Among nonplastic samples, samples with weak and
Plasticity is the leading split variable for the �1500, as it wasmoderate grade form one large group, and samples with
for �33. First, two large groups are formed by separatingstrong grade form a separate Terminal Node [9] with
nonplastic and slightly plastic on one hand, and moder-the average �33 value that is significantly larger than in
ately plastic and very plastic on another hand. Non- ormost of other nonplastic samples. The stickiness is the
slightly plastic samples that are not sticky form threenext important partitioning factor in weak or moderate
groups in which the average water retention at �1500grade samples. Nonsticky samples form one group, and
kPa increases as the grade becomes stronger (Nodessticky to various extent samples are assembled in an-
[1], [2], and [3]). Non- or slightly plastic samples withother group. Nonsticky samples are further partitioned
various degrees of stickiness are partitioned by gradeby their grade; the moderate-grade samples form a Ter-
of structural units. Where grade is weak or moderate,minal Node [5], whereas the weak-grade samples are
a further partitioning occurs according to the dry consis-partitioned by the shape of structural units. The samples
tency. The soft dry consistency leads to smaller waterwith blocky or prismatic shape of structural units have
retention at �1500 kPa (Node [4]), as compared withsmaller average water retention than samples with other
the hard dry consistency where the largest �1500 corre-shape of units combined in Terminal Node [4]. Among
sponds to very sticky samples (Node [8]). Where sam-samples with blocky or prismatic shape of structural
ples are non- or slightly plastic, have weak or moderateunits, samples with soft dry consistency have smaller
grade of textural units, and are moderately sticky, theaverage water retention (Nodes [1] and [2]) as compared
water content at �1500 kPa increases as the shape ofwith samples with hard dry consistency (Node [3]). Non-
textural units changes from ‘platy or lenticular or pris-plastic samples with structure showing weak or moder-
matic’ to ‘blocky or angular blocky’ to ‘crumb or granu-ate grade, blocky shape, and soft consistency are finally
lar’, as shown in Nodes [5], [6], and [7]). Non- or slightlypartitioned by the size of structural units (Nodes [1]

and [2]). plastic samples with various degrees of stickiness and
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Fig. 4. Regression tree to estimate water retention at �33 kPa from structural and consistence parameters; y, yes and n, no answers to the
parameter definition in the box above. The node number in brackets, the average value of the volumetric water content at �33 kPa for the
group, the standard deviation of the water content within groups in parentheses, and the count of samples in the group are shown beneath
terminal nodes.

strong grade are partitioned by the shape of structural accurate. The root-mean square errors are 8 and 6.7%
units so that platy, lenticular, or prismatic units corre- (by vol.) for �33 kPa and 5.6 and 4.4% (by vol.) for
spond to smaller average water content at �1500 kPa �1500 kPa from structural and consistence parameters
(Node [9]), as compared with other shapes (Node [10]). and from laboratory textural classes, respectively. The

Moderately plastic samples are split into subgroups root-mean square errors of estimates from field tex-
by their dry consistency (Nodes [11] and [12]) so that tural classes are ≈7 and 4.8% (by vol.) for �33 and
the soft dry consistency means smaller water retention �1500 kPa, respectively. Variability of water retention
at �1500 kPa. Very plastic soils form a single group at both �33 and �1500 kPa within the groups found
with the largest average �1500 (Node [13]). with regression trees (Fig. 4 and 5) is comparable withUsing stickiness along with plasticity brings a substan-

the variability within textural classes (Table 1). Differ-tial decrease in deviance for non- and slightly plastic
ences between average values in the groups are notsamples. The main decrease in the deviance occurs dur-
statistically significant for grouping either with regres-ing the first two or three partitions. No relationship
sion trees or by field-judged or lab-determined tex-between the degree of plasticity and within-group vari-
tural classes.ability can be seen in Fig. 5. The count of samples in a

Adding structural and consistence parameters to lab-group does not affect variability in �1500 within the group.
oratory textural classes brings a small, albeit significant,

Combining Textural Classes with Structural increase in accuracy of estimates (Table 4). The regres-
and Consistence Parameters to Estimate sion trees are shown in Fig. 6. In coarse textural soils,

Water Retention plasticity and stickiness follow textural class in parti-
tioning data at �33 kPa (Fig. 6a). Dry consistency andAccuracy of water retention estimates from field
shape are most useful to group data on fine textural soilstructural and consistence parameters is compared in
at this matrix potential. Plasticity, stickiness, and gradeTable 3 with accuracy of estimates from textural class
are helpful to partition water retention at �1500 kPadetermined from laboratory analysis. The estimates from

laboratory textural classes are about 20 to 40% more only in loams, silt loams, and sandy clay loams (Fig. 6b).
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Fig. 5. Regression tree to estimate water retention at �1500 kPa from structural and consistence parameters; y, yes and n, no answers to the
parameter definition in the box above. The node number in brackets, the average value of the volumetric water content at �1500 kPa for
the group, the standard deviation of the water content within groups in parentheses, and the count of samples in the group are shown beneath
terminal nodes.

DISCUSSION by two to four broad classes, and are to some extent
observer-specific (Nettleton et al., 1969; Post et al.,Field-determined structural and consistence categori-
1986). Nevertheless, the accuracy of the water retentioncal parameters provide enough information to be used
estimates lies within the range of accuracy achievedin regression trees for partition soil samples by their
using much more information from laboratory analyses.water retention. All those parameters are defined only
Schaap and Leij (1998) reported RMSE values of 10–

Table 3. Probability distribution of errors (%, by vol.) in water Table 4. Root mean square errors (%, by vol.) of water retentionretention estimates from field structural and consistence pa- with various sets of categorical soil basic parameters.rameters and from textural class determined from laboratory
Data set �33 kPa �1500 kPaanalysis.

Structural and Textural class determined Lab texture class 6.7 4.4
Lab texture class � structure 6.6 4.4Probability consistence parameters in laboratory
Lab texture class � consistence 6.5 4.3

% �33 kPa �1500 kPa �33 kPa �1500 kPa Lab texture class � structure � consistence 6.4 4.3
Field texture class 7.0 4.810 �10.0 �6.7 �7.9 �5.1

25 �5.3 �4.1 �4.4 �3.0 Field texture class � structure 6.9 4.8
Field texture class � consistence 6.9 4.850 �0.3 �0.9 �0.5 �0.4

75 5.0 3.1 3.6 2.3 Field texture class � structure � consistence 6.8 4.8
Structure � consistence 8.0 5.690 9.9 7.8 8.0 5.6
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Fig. 6. Regression trees to estimate water retention from laboratory textural class and structural and textural parameters at (a) �33 kPa and
(b) �1500 kPa. Left (right) branches lead to samples where the categorical variables have (have not) values shown in the box above splits;
the average value of the volumetric water content at �33 kPa for the group is shown beneath terminal nodes.

12% (by vol.) for estimates of water retention from of group average values as related to soil properties.
Soil plasticity is a leading variable for partitioning soilthree large interregional databases using artificial neural

network with sand, silt, and clay contents and bulk den- samples by their water retention. The ability of soils to
exhibit plastic behavior has long been thought to besity from laboratory analyses as input variables. Leen-

hardt (1995) estimated water retention in a small re- related to soil clay content, and soil organic matter is
also a recognized factor increasing plasticity (Horn andgional database from laboratory data on clay content

with RMSE ≈7% (by vol.). This comparison indicates Baumgartl, 1999). Figure 7a shows the distribution of
plasticity classes within textural groups in our data set.that structure and consistence determined in the field

contain substantial information about soil properties As expected, sands and loamy sands are mostly nonplas-
tic. However, a substantial amount of sandy loams,relevant to soil water retention.

It seems to be appropriate to discuss trends in changes loams, silt loams, silts, and sandy clay loams are nonplas-
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Fig. 7. Distribution of plasticity classes and stickiness classes among textural classes.

tic, and even 10% of clay samples are nonplastic. In Btv and Bt horizons in 18 pedons of fine loamy, siliceous,
thermic Kandiudults with various contents of plinthite.nonplastic soils, the next important parameter for

grouping is grade (Fig. 4). Nonplastic soils with strong Image analysis showed much larger percentage of pores
with the equivalent diameter between 0.05 and 0.005grade, that is, with distinct structural units, probably

have large pore space available for water storage at �33 cm in horizons with weak grade as compared with hori-
zons with the moderate grade. That range of equivalentkPa, that is, close to field capacity. This may explain

the large average value of �33 at Terminal Node [8] in diameters corresponds to the range of matric potentials
between 0.6 and 6 kPa, which means that soil in theFig. 4. Other partitions by grade also lead to increase

of the average �33, as grade changes from weak to moder- horizon with a weak grade loses much more water as
the suction is applied as compared with the soil in hori-ate to strong (i.e., in Fig. 4, Nodes [1]–[5] as compared

with Nodes [6]–[8]; Nodes [10] and [11] as compared zons with the moderate grade. Southard and Buol (1988)
observed that in Ultisols that they had studied, grade ofwith Nodes [12] and [13], and Nodes [7] and [12] as

compared with Nodes [8] and [13], respectively). Inter- blocky structure gradually became stronger with depth,
whereas the amount of pores emptying at �10 kPa de-estingly, an increase in grade leads also to the increase

in water retention at �1500 kPa (see Nodes [1]–[3] and creased with depth. This meant an increase in water
retention since bulk density did not show depth-relatedNodes [4]–[7] in comparison with Nodes [9] and 10 in

Fig. 5). This may mean that the visible well-pronounced trends. Grade appears to be a relatively strong predictor
of water retention, and grade-related parameters of ag-grade remains well expressed at finer scales where water

retention at �1500 kPa takes place, or that the distribu- gregate size distribution have been included in soil tilth
index (Singh et al., 1992) and in the model of soil watertion of a structural units’ properties reflects the pore

size distribution at finer scales (Filgueira et al., 1999). retention with explicit formulation of structure effects
(Nimmo, 1997).The observed effect of grade on the average �33 is

similar to the one reported for water retention at �10 An increase in stickiness for the same plasticity class
necessarily leads to the increase in water retention bothkPa �10 by several authors. Bouma (1992) observed dif-

ferences in water retention between weak and strong at �33 and �1500 kPa. Various classes of stickiness can
be found in the same textural class (Fig. 7b), althoughgrade in arable and grassed Haplaquent, respectively,

both having subangular blocky structure. The average a trend of increase in stickiness with the decrease of
sand content can be traced in this figure. As opposedwater retention at �10 kPa was larger in samples with

strong grade (Bouma, 1992), although this difference to plasticity, an increase in organic matter content tends
to decrease stickiness (Domzal, 1970; Chancelor, 1994).was not statistically significant. Soil with a weaker grade

also had smaller water retention at �10 kPa in the study Different types of clays exhibit widely different sticki-
ness characteristics (Chancelor, 1994). For example,of Bouma and Anderson (1973), who compared water

retention of two fine silty mesic Argiudolls, both having montmorillonite clay is three times more sticky than
kaolinite clay. Clay mineralogy and organic matter con-medium prizmatic parting to subangular blocky struc-

tural units. Yet another insight in the importance of the tent are important factors of soil water retention (Rawls
et al., 1991). Stickiness is affected with those factors,grade give data from the study of Shaw et al. (1997),

where pore size distributions have been compared for too, and this is a probable reason for stickiness being
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the second important consistence property to be related ters provide further subdivision (Fig. 6). This implies
that the aggregation of 12 textures into five classes (Soilto soil water retention, as shown in Fig. 4 and 5.

Size of structural units is included in the partitioning Survey Division Staff, 1993) may be sufficient for the
adequate estimation of water retention. Using this ag-variables only for nonplastic soils for �33. Soils of weak

grade have larger average values of water retention at gregation as input for estimating water retention could
also help to mitigate field misclassification of textures�33 kPa if their structural units are finer (Nodes [1],

[2], and Nodes [6]–[8] in Fig. 4). The absence of large and presents an interesting avenue to explore.
Although regression tree techniques has provided anstructural units and weak grade may mean absence of

large pores and a wide pore-size distribution that should interpretable partitioning and has shown internal rela-
tionships for the database in this work, it has limitationsprovide relatively large water retention near field ca-

pacity. that preclude addressing several issues that might be of
interest in some studies. Other multidimensional classi-Shape of structural units enters the regression at a

relatively late stage of partitioning if textural classes are fication techniques should be used to find out whether
a holistic representation of soil structure with the tripletnot used. In nonplastic soils, blocky shape of structural

units corresponds to the lower average water retention of size, grade, and shape categories may have more
predictive power as compared with using each of thoseat �33 kPa, as compared with other shapes (Nodes [1],

[2], and [3] as compared with Node [4] in Fig. 4). In structural parameters as independent predictors. Errors
in the regression tree estimates include the effect ofvery plastic soils, the effect is quite the opposite (Nodes

[16] and [17]). We hypothesized that, in the latter case, field misclassification errors in categories if texture,
structure, and consistence. To decompose regressionblocky shape of soil structural units reflects the presence

of minerals with mobile lattice that enhance water reten- errors and separate effects of misclassification, other
regression techniques, such as dummy coding (McCul-tion of soils. Another reason may be that soil textural

differences create differences in role of shape of struc- lagh and Nelder, 1989), should be used provided the
misclassification errors are known. A version of thetural units in water retention. An indication can be

found in Fig. 4, where crumb or granular shape results dummy coding was successfully used by Lin et al.
(1999b) to estimate Ksat from morphometric indices. Cat-in the smallest water retention in sandy loams and in

the largest water retention in silt loams, silt, clay loams, egories of texture, structure, and consistence are not
uncorrelated (Fig. 7). That does not preclude using themsilty clay loams, and clays at �33 kPa. Nonsticky soils

with platy-, lenticular-, or prismatic-shaped structural as independent predictors in regression. Correlation be-
tween predictors, or multicollinearity, is a common phe-units have lower average water retention at �1500 kPa,

and this trend probably has to be attributed to specifics nomenon in regression analysis. Neter and Wasserman
(1974, p. 341) discuss the milticollinearity in great detailof soil composition that we have not been able to

discern. and note that the fact that some of all independent
variables are correlated among themselves does not, inSoil dry consistency expresses a soil resistance to rup-

turing or deformation, and is usually interpreted with general, inhibit an ability to obtain a good fit, nor it
tends to affect inferences about mean responses or pre-reference to cohesion between soil particles. Whereas

plasticity is the property which allows deformation with- dictions of new observations, provided these inferences
are made within the region of observations. Droppingout cracking, cohesion is a possession of a shear strength

which allows the soil to maintain its shape under load one or several independent variables from the model
will not help to assess the effects of the independenteven when it is not confined (Carter and Bentley, 1991).

Although dry consistency generally increases with the variables for two reasons. First, no information is ob-
tained about dropped independent variables. Second,increase of clay content, it is affected both with contents

of other textural fractions (Ibanga et al., 1980) and with the magnitudes of the regression coefficients for the
independent variables remaining in the model are af-intricacies of the fine fraction composition. Carter and

Bentley (1991) state that whereas plasticity is produced fected by the correlated independent variables not in-
cluded in the model (Neter and Wasserman, 1974, p.by the electrochemical nature of the clay particles, cohe-

sion occurs as a result of their very small size. Neverthe- 346). Nevertheless, should a physics-based method to
remedy the multicollinearity in texture, structure, andless, clay mineralogy is an important factor of soil

strength (Horn, 1993). In loess soils that have been air- consistence data be proposed, the dummy coding could
be used to apply classical linear statistical regressiondried, carbonates create a rigid frame that increases

resistance to rupture (Lysenko, 1972). Carbonates and analysis.
We stress that the results of the regression tree appli-other salts precipitating from soil solutions produce the

same effect in clay soils. Aging of colloids is yet one cation in this work do not imply any causal relationship
between soil consistence and soil structural parametersmore process leading to the increase of resistance to

rupture. Addition of organic matter as sludge lead to on one hand, and water retention on another hand.
Regression tree merely reflects the fact that structuralthe reduction in cohesion (Chang et al., 1983). Overall,

dry consistency provides information about soil constit- parameters, consistence parameters, and water reten-
tion are affected by the same basic soil properties, thatuents that is additional to the plasticity class.

Using structural and consistence parameters along is, content and type of clay minerals, organic matter
content and quality, etc. Because those relationshipswith textural classes creates broad subgroups of textural

classes within which structural and consistence parame- do not show strong correlations, and consistence and
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